
AD-A256 731

A Module System for a Programming Language
Based on the LF Logical Framework

Robert Harper Frank Pfenning D TI
September 1992 DTII
CMU-CS-92-191 ELECTE

OCT 2 8 1992
S C

__ School of Computer Science
SCarnegie Mellon University

(A) Pittsburgh, PA 15213

Abstract

We describe a module system for Elf, a logic programming language based on the LF logi-

cal framework. The static part of module calculus addresses name-space management and
structured presentation of deductive systems. The dynamic part addresses search-space

management and modularization of logic programs.

This research was sponsored by the Avionics Laboratory, Wright Research and Development Center,
Aeronautical Systems Division (AFSC), U.S. Air Force, Wright-Patterson AFB, Ohio 45433-6543 under
Contract F33615-90-C-1465, ARPA Order No. 7597.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the U.S. government.

*310 27 118

Keywords: logical frameworks, typed A-calculus, dependent types, modularity, struc-
tured theories, logic programming

1 Introduction

Formal deductive systems play an important role in computer science, particularly in the
areas of logic and semantics of programming languages. They are employed in three dif-
ferent, but obviously related, roles. Firstly, they are used to specify logics, type systems,
operational semantics and other aspects of languages. Secondly, they form the basis for the
implementation of such deductive systems. Thirdly, they provide an appropriate language
for the formulation and proof of meta-theorems of programming languages.

The LF Logical Framework [11] is designed to provide an appropriate language for the
high-level specification of deductive systems as they occur in logic and computer science. Its
basic principle is often summarized by saying that judgments (the basic unit of deductive
systems) are represented as types and deductions as objects. The framework was intention-
ally kept weak (by excluding, for example, polymorphism and impredicative constructs) in
order to better support mechanization and to allow a simple meta-theory. This has proved
auspicious: algorithms for unification have been developed [6, 26] and the type theory un-
derlying LF has been amenable to an operational interpretation which is realized in the Elf
programming language [22, 23]. Furthermore, it also seems possible to express a wide range
of meta-theoretic properties of deductive systems within LF, though this line of research is
only in its initial stages [17, 24, 10].

We believe that for all three tasks, specification, implementation, and meta-theory of
deductive systems, substantial benefits can be derived from explicit structuring mechanisms
for the presentation of such systems. In this paper we make a concrete proposal for a
module system for the Elf programming language which attempts to address those three
central issues. We have been conservative in that we only describe the part of the module
calculus we understand well from the semantic and pragmatic point of view, although we
do not give a formal semantics in this paper.' Some of the more difficult extensions we
may consider in future work are mentioned in Section 6. In this paper we provide informal
discussions of the meanings of various language constructs and properties. As an extended
example throughout we will use two formulations of minimal propositional caiculus with
implication and conjunction: an axiom system in the style of Hilbert and Gentzen's calculus
of natural deduction (system NJ).

The problem of modularity in the presentation of theories and logical system has been
addressed from the semantical [13, 12] and the type-theoretic [4, 5, 30] point of view. Our
design has been guided by these ideas and the pragmatic principles of the ML module
system [16, 19]. In this paper we present at an informal level an initial design for a module
system for the Elf implementation of LF [23], stressing both the static (presentational)
and dynamic (search-related) aspects of the design. Many of the issues and solutions are
independent of the particular core type theory chosen and we believe that the ideas presented
here are also applicable to the design of module calculi for AProlog [20], Isabelle [211, or the
Calculus of Constructions [3]. For further discussion of related work, the reader is referred

'We currently have an implementation of the static semantics of the module calculus and a separate
implementation of term reconstruction and the dynamic semantics of the core language. Experience with
these implementations validates the ideas in this proposal from the pragmatic point of view. We hope to
have completed a full implementation of all aspects of the language by the end of 1992.

to Section 6.
The remainder of this paper is organized as follows. In Section 2 we review the LF

Logical Framework as it is realized within the Elf programming language. As our approach
to a module calculus is explicitly stratified (modules do not gain the status of objects, but
exist in a different level of language), this core language is not modified in any essential way
by the addition of modules. In Section 3 we present a calculus of signatures and realizors.
Since object languages are defined by signatures, these are the centerpieces of our module
calculus. Realizors provide a means of interpreting one signature into another, and hence may
be used to express certain forms of "logic morphisms". In Section 4 we show how a notion of
search, derived from the underlying operational semantics of Elf, can be accounted for in the
module system. In Section 5 we show how limitations of realizations as defined in Section 3
can be circumvented by using relations (rather than functions) between signatures. While
such relations do not have the same meta-theoretic force as realizations, they are nonetheless
operationally adequate in that they can be executed to implement logic interpretations. We
conclude with a brief summary of related work in Section 6 and a recapitulation of the
concrete syntax in Appendix A.

2 The Core Language

We briefly review the LF logical framework [11] as realized in Elf [22, 23]. A tutorial intro-
duction to the Elf core language can be found in [17].

The LF calculus is a three-level calculus for objects, families, and kinds. Families are
classified by kinds, and objects are classified by types, that is, families of kind Type.

Kinds K TypeI IIx:A. K
Families A a I IIx:Ai. A2 I Ax:A1. A2 I AM
Objects M cIxIAx:A.MIMiM 2

We use K to range over kinds, A, B to range over families, M, N to range over objects.
a stands for constants at the level of families, and c for constants at the level of objects.
In order to describe the basic judgments we consider contexts (assigning types to variables)
and signatures (assigning kinds and types to constants at the level of families and objects,
respectively).

Signatures E : "E,a:K I E, c:A
Contexts r F, x:A

We stipulate that constants can appear only once in signatures and variables only once
in contexts. This can always be achieved through renaming. [M/x]N is our notation for the
result of substituting M for x in N, renaming variabies as necessary to avoid name clashes.
We also use the customary abbreviation A -- B and sometimes B +- A for Hx:A. B when
x does not appear free in B. Similarly, A - K can stand for flx:A. K when x does not
appear free in K.

2

The LF type theory is a formal system for deriving judgments of the following forms:

E signature E is a valid signature
I-, F context F is a valid context
IF K kind K is a valid kind
F F'r A: K A is a valid family of kind K
r 1-r M : A M is a valid object of type A

The derivability relation for these judgments is defined inductively by a set of inference rules.
As examples, we show the rules for abstraction, application, and type-conversion at the level
of objects.

F, x:A Fý- M : B r F-,; M : IIx:A. B F' -HN: A

F I-, Ax:A. M : flx:A. B F -• M N : [N/x]B

F1 -r M : A A = A' F-E A' : Type

F -E M : A'

The rule of type conversion makes use of the notion of definitional equality, which we
take to be 377-conversion. Harper et al. [11] formulate definitional equality only with 3-
conversion and show that type checking is decidable. They also conjecture that type-checking
in the system resulting from adding the it-rule would still be decidable, which has recently
been proved using different techniques by Coquand [2], Salvesen [27], and Geuvers [9]. For
practical purposes the formulation including the 77-rule is superior, since every term has
an equivalent canonical form. Thus, for us, = is the least congruence generated from 377-
conversions in the usual manner.

We present concrete syntax for Elf in form of a grammar, where optional constituents are
enclosed within () and repeated components are shown as cat, ... cat,,. The concrete syntax
of the core language is very closely modeled after the abstract syntax presented earlier and is
also stratified. We use term to refer to an entity which may be from any of the three levels.
In the last column we list the corresponding cases in the definition of LF above.

A c

Mr! -7-

D i

3

kindesp ::= type Type
I {id (:famezp)} kindexp IIx:A. K
I famezp -> kindezp A -- K
I (kindexp)

famexp ::= id a
I {id (:fameXpI)}I famezp2 IIx:A 1. A2
I [id (:famexpl)] famezp 2 Ax:A 1 . A2
I famezp objezp AM
I famezp1 -> famezp 2 A 1 -. A2

I famezp 2 <- fameXp 1 A1 -, A2

I -
I famezp : kindexp
I (famexp)

objexp ::= id c or x
I [id (:famezp)] objexp A•z:A. M

I objeXpI objezp2 M1 M2

I -
I objexp :famezp
I (objexp)

The terminal id stands either for a bound variable, a free variable, or a constant at
the level of families or objects. Bound variables and constants in Elf can be arbitrary
identifiers, but free variables in a declaration or query must begin with an uppercase letter
(an undeclared, unbound lowercase identifier is flagged as an undeclared constant). Identifiers
may contain all characters except 0){}f[] :. ; % and whitespace. A -> B and B <- A both
stand for A --+ B. The later is reminiscent of Prolog's "backwards" implication :- and
improves the readability of some Elf programs. -> is right associative, while the left arrow
<- is left associative. Juxtaposition binds tighter than the arrows and is left associative.
The scope of quantifications {x : A} and abstractions x : A] extends to the next closing
parenthesis, bracket, brace or to the end of the term. Term reconstruction fills in the omitted
types in quantifications {W} and abstractions [x] and omitted types or objects indicated by
an underscore -. In case of ambiguity a warning or error message results. For a description
of Elf's term reconstruction phase see [231.

3 Basic Concepts

We present the basic structuring concepts of the Elf module system by a series of examples,
all based on the formalization of various fragments of minimal propositional logic in LF.2

The complete syntax of Elf appears in Appendix A.
2All of the examples in this and subsequent sections have been validated by our prototype implementations

in the following sense. The core language implementation is used to perform term reconstruction and dynamic
search, and the resulting completed forms are passed to the modules checker,

4

3.1 Signatures

The LF methodology of representing deductive systems consists of presenting an object
language and its rules of deduction by a signature consisting of a sequence of declarations of
constants together with their types or kinds. Valid types (relative to a signature) represent
syntactic categories and judgments, valid objects represent abstract syntax and deductions.

The Elf module language provides a means of incrementally defining and structuring sig-
natures. In its simplest form a signature consists of a sequence of declarations introducing
constants at the level of families (f am declarations) and at the level of objects (obj declara-
tions). At the top level a signature may be bound to a signature identifier using a signature
binding. These features are summarized by the following grammar:

top ::= signature sigid - sigexp signature binding

I top1 ; top2 composition

sigexp sig decl end encapsulation

decl fam id : kindexp family
I obj id : famexp object
I decl, decl 2 composition

It is an error to declare an identifier more than once in a signature.
To illustrate the use of the module language, we begin with the signature MPCLANG of

minimal propositional logic with implication, conjunction, and truth.

si&nature MPC.LANG =

sig
faro o : type %, Propositions

obj > : o -> o -> o %. Implication
obj & : o -> 0 -> o % Conjunction
obj tt :o % Truth

end;

This declaration introduces a signature identifer MPCLANG, and binds it to a signature
consisting of four constants, one a family constant of kind type, the other three object
constants of the indicated types. (The symbol "I" begins a comment which extends to the
end of the line.)

One fundamental structuring device for signatures is inclusion, which provides the means
of splicing the declarations of one signature into those of another. We employ this device
in forming the signature HILBERTt of Hilbert-style minimal propositional logic, defined as
follows:

signature HILBERT1
sig
% Language
include MPCLANG

5

SHilbert deductions
fan I- : -> ype

% Axioms
obj K :- (u>A (-> B A))
obj S : - (-> (-> A ('> B C)) (a> (-> A B) (> A C)))
obj ONE : - tt
obj PAIR :- (-> A (=> B (k A B)))
obj LEFT : - (a> (k A B) A)
obj RIGHT :- (k) (a A B) B)

% Inference rule
obj MP : I- (-> A B) -> I- A -> I B

end % signature HILBERTi

The declarations of MPCLANG are included into HILBERT1, and are subsequently used in
defining the deductive machinery of the Hilbert-style presentation of minimal propos* nal
logic.

In addition to the use of include, the definition of the signature HILBERTI makes use of
the implicit syntax facility of Elf [23]. Variables which are free in a fam or obj declaration
are implicitly quantified within the declaration. Thus the full form of the declaration of the
K proof constructor would be

obj K : {A:o} {B:o} I- (-> A (-> B A))

in Elf's concrete syntax. Such implicit quantifiers are tied to a form of argument synthesis
(as used in LEGO [251, for example) in that the constant K has two implicit arguments which
are determined through term reconstruction.

The prohibition on re-declaration of constants in a signature extends to the include
declaration: an included signature may not override prior declarations, nor may subsequent
declarations override included ones. We impose this restriction so as to avoid the semantic
complications arising from the use of "hidden" names in ML [19]. (We may wish to recoilsider
this decision once we have gained more experience with the system.) To avoid possible
naming conflicts, we may use a realizor declaration, as follows:

signature HILBERT2
Sig
% Language
realizor L : MPCLANG

% Hilbert deductions
fam I- : L.o -> type

% Axioms
obj K : I- (L.-> A (L.-> B A))

obj S I- (L.-> (L.-> A (L.-> B C))
(L.-> (L.-> A B) (L.=> A C)))

obj ONE :I- L.tt
obj PAIR :- (L.-> A (L.-> B (L.& A B)))
obj LEFT :I- (L.=> (L.& A B) A)

obj RIGHT :I- (L.=> (L.& A B) B)

% Inference rule
obj MP : I- (L.-> A B) -> l- A -> I- B

end % signature HILBERT2

The realizor declaration introduces a realizor identifier L with the signature MPCLANG.
The effect of this declaration may be thought of as a combination of renaming and inclusion:
each constant c introduced in MPCLANG is renamed to L.c, and the resulting signature is
included into the signature HILBERT2. This renaming applies to both declarations and uses
of constants, so that L. I- has kind L. o -> type, and so on. Names of the form L.c are
called qualified names, or long identifiers. In general a qualified name consists of a sequence
of realizor identifiers, separated by periods, followed by another identifier.

The concrete syntax associated with realizor declarations and qualified names is as fol-
lows:

decl ::= realizor realid : sigexp realizor

longrealid ::= (longrealid.) realid qualified realization identifier

longid ::= (longrealid.) id qualified term identifier

In addition the syntax of terms is modified in the obvious fashion by allowing non-binding
occurrences of id to be longid.

3.2 Realizors

In the Elf module system realizors provide a means of interpreting one signature (the
"source") into another (the "target"). This is accomplished by providing a definition cor-
responding to each declaration in the target signature using the constants in the source
signature. The type of the defining expression must agree with the declared type of the con-
stant given in the target signature, taking account of the definitions of the others constants
in the target on which the type may depend.

The basic forms of definition are given by the following grammar:

defn ::= faro id(:kindexp)-famezp family
I obj id (:famezp) - objexp object
I defn1 defn2 composition

The famo and obj definitions define the identifier id to stand for the expression to the right
of the equal sign. The optional kind or family expression may be used to constrain the

7

defining expression to have the ascribed kind or type; the type checker will ensure that
the ascribed type or kind is correct for the defining expression. Definitions are always
transparent - for purposes of type checking, a defined identifier is synonymous with its
definition. Consequently, it is permissible to re-define an identifier within its scope: uses of
"hidden" identifiers are simply replaced by their definitions.

Definitions may be localized using the let construct:

defn let defnj in defn2 end local definition

decl ::= let defn in decl end local definition

The semantics of a local definition is given by substitution: upon leaving the scope of a local
definition, the defined identifiers are discharged by replacing their occurrences within the
body of the let form by their definitions. For example, the definition

let
obj ID MP (MP S K) K

in
obj K* : I- (> A (=> B B)) - MP K ID

end

is equivalent to the definition

obj K* : I- (-> A (=> B B)) - MP K (MP (MP S K) K)

Definitions may be packaged together to form a realizor. Realizors are introduced at top
level by a realizor binding that specifies both the source and target signatures of the realizor.
The concrete syntax of a realizor binding is as follows:

top ::= realizor realid (parn1 ... parm,,)
(:sigexp) = realexp realizor binding

parm ::= (decl) parameter declaration

realexp ::= real defn end encapsulation

The sequence of parm's determines the source signature (i.e., the constants that may be used
within realexp), and the (optional) sigexp determines the target signature (i.e., the constants
that are to be defined by realezp). The target signature may be omitted in cases where no
ambiguity arises. For example, when realexp is an identifier, the target signature is taken to
be the (unique) signature ascribed to the identifier at the point at which it is declared or
defined. When present, the target signature imposes the requirement that the given realizor
match the given target signature, as described by example below.

When signatures are interpreted as logic definitions, realizors provide a form of "logic
morphism" that allows for the expression of certain kinds of interpretations of one logical
system in another. Consider the following extension of the signature HILBERT1 given above:

SJ

signature HILBERT1+ =
sig

include HILBERT1
obj ID :- (> A A)
obj COM-L& I- (& A B) -> I- (k B A)

end;

The signature HILBERT1+ presents a logical system extending that presented by the signature
HILBERT1 with two additional rules of inference, expressing the reflexivity of => and the com-
mutativity of &. Since the additional rules of HILBERT1+ are derivable within HILBERT, the
extension is in fact conservative. The derivability of the additional rules may be formalized
by the following realizor with source HILBERT1 and target HILBERT1+:

realizor Hilbertl+ (realizor H : HILBERT1) : HILBERT1+ =

real
open H
obj ID = MP (MP S K) K
obj COMM-& - [x :- (k A B)] MP (MP PAIR (MP RIGHT x))

(MP LEFT x)
end;

The explicit ascription of the target signature HILBERT1+ constrains the realizor Hilbert 1+
to supply definitions for all constants of HILBERTI+ using the constants of the source sig-
nature, HILBERT1. These definitions must satisfy the type constraints of HILBERT1+ as we
illustrate below.

The realizor Hilbertl+ is defined using an open definition to incorporate, item by item,
the constants of the signature HILBERT1. The effect of the definition open H is the same as
that of including the definitions

faro o = H.o
obj => = H.=>
% ... etc ...

fain I- = H.I-
obj K - H.K
obj S = H.S
% ... etc ...

in the body of the realizor Hilbertl+. In addition, Hilbertl+ provides explicit definitions
for each of the two additional constants of the signature HILBERTi+.

The fact that Hilbert 1+ is a "logic morphism" follows from the type checking obligations
imposed by the presence of the result signature HILBERT1+ on the definition of the realizor
Hilbertl+. Specifically, the definitions comprising the body of Hilbertl+ must be type
correct in the sense that the defining expression for an identifier id in the signature HILBERTI+
must have the type or kind specified in HILBERT1+, after substitution of all other identifiers
by their definitions. These type checking obligations include the requirements that o, which
is defined to be the expression H.o, has kind type, and that ->, which is defined to be

9

the expression H. =>, has type H. o -> H.o -> H.o. More interesting are the type checking
obligations associated with the declarations of ID and COM•t&. In particular, it must be
checked that MP (MP S K) K has type I - (-> A A) bearing in mind that MP is defined to be
H.MP, and so on. Since the specification of ID has implicit arguments, this requires checking
that

(MP (=> A (=> B A)) (=> A A)
(MP (-> A (-> (=> B A) A)) (=> (f> A (-> B A)) (f> A A))

(S A (-> B A) A)
(K A (=> B A)))

(K A B))
I- (-> A A).

in a context where A: o and B: o, some arguments to MP, S, and K having been determined by
term reconstruction.

The type checking obligations that arise by specifying, or ascribing, a target signature to
a realizor is called signature matching. We adopt two features of the ML signature matching
process, namely coercion and implicit instantiation. The matching process is coercive in the
sense that if a realizor has more components than are required by the ascribed signature.
the additional definitions are winnowed out by substituting their definitions wherever they
are used. The result is a "view" of the given realizor that defines precisely the identifiers
declared in the ascribed signature. The matching process involves implicit instantiation
when the declared type or kind of an identifier is implicitly quantified, as illustrated above.
This is reminiscent of the implicit instantiation of type schemes during signature matching
in ML.

Corresponding to realizor declarations we have rea!izor definitions:

defn ::= realizor realid (:sigexp) = realexp realizor

Realizor definitions may occur within other realizors so as to satisfy a realizor declaration in
a signature. For example,

signature HILBERT2+ =
sig

realizor H : HILBERT2
let

opon H
in

obj ID : I- (> A A)
obj COMM -& :]- (& A B) -> I- (& A B)

end
gnd;

realizor Hilbert2+ (realizor H : HILBERT2) : HILBERT2+ =
real

10

realizor H : HILBERT2 - H
let

opan H
in

obj ID- MP (MP S K) K
obj COMM-& = [x] MP (MP PAIR (MP RIGHT x)) (MP LEFT x)

end
end;

Here we declare H to be a realizor identifier within HILBERT2+; a corresponding definition is
provided in Hilbert2+.

3.3 Parameterization and Instantiation

Another important structuring device for signatures is parameterization, which allows us to
define families of signatures indexed by objects, families, or realizors. For example, we may
define the HILBERT signature parametrically in the syntax as follows:

signature HILBERT (realizor L : MPCLANG) f
sig

Y. Hilbert deductions
faro I- : L.o -> type

let open L in
% Axioms
obj K I- (> A (-i> B A))
obj S I- (> (> A (-> B C)) (=> (> A B) (> A C)))
obj ONE I- tt
obj PAIR : I- (f A (-> B (& A B)))
obj LEFT I- (> (& A B) A)
obj RIGHT I- (k> (A B) B)

% Inference Rule
obj MP I- (> A B) -" I- A -> I- B

end % let open L
end; % signature HILBERT

Notice that we use a combination of let and open to avoid repetitive use of qualified names
in the body of the signature.

Parameterized signatures may be instantiated by a definition matching the parameter
declaration. The matching process is the same as is used to check the ascription of a target
signature to a realizor: the parameter signature is the target against which the argument
definition is checked. The matching process is coercive, with hidden components eliminated
by substitution. Here is a simple example in which we give a parameterized form of the
HILBERT+ signature. Notice that in the body we instantiate HILBERT with the parameter to

11

HILBERT+ so as to ensure that both are defined over the same language. In ML a sharing
specification is used to the same effect, but we have chosen to use the simpler device of
parameterization in our design.

signature HILBERT+ (realizor L MPCLANG)
sig

include HILBERT (realizor L = L)
obj ID :- (L.-> A A)
obj COMM-& : [- (L.& A B) => [= (L.& B A)

end;

Realizors may also be instantiated by other realizors. An example of this is the instanti-
ation of SYMM_&_LANG by the realizor L in the example below.

The parameterization -nd instantiation mechanisms of the module language are given by
the following grammar:

top ::= signature sigid (parmn ... parmrn) = sigexp signature binding

parm ::= (decl) parameter declaration

sigexp ::= sigid (inst, ... inst,) signature instantiation

realexp ::= realid (inst, ... instn) realizor instantiation

inst ::= (defn) parameter instantiation

We close this section with an extended example that makes the symmetry of conjunc-
tion explicit. Similar duality interpretations have been investigated and used in the IMPS
system [7]. Such an interpretation is characterized by the fact that the language under con-
sideration is interpreted in itself in a non-trivial fashion. Here, we interpret a A B as a B
A.

realizor SYMM.&_LANG (realizor L : MPCLANG) : MPCLANG
real

faro o = L.o
obj => = L.=>
obj a = [A:o] [B:o] L.a B A
obj tt = L.tt

end;

The realization which shows that this interpretation transforms theorems into theorems
is non-trivial only in one case: we have to show that the translation of the PAIR axiom is a
theorem. The proof we reproduce below is perhaps not the most direct Hilbert deduction
of this theorem-see Section 4 how such proof objects may be constructed automatically,
taking advantage of Elf's dynamic semantics. Note that type-checking guarantees that the
proofs supplied below are correct.

12

realizor SYMM_&
(realizor L : MPCLANG)
(realizor H : HILBERT (realizor L = L))
: HILBERT (realizor L - SYMM_&_LANG (realizor L Q L)) -

real
let open L open H in

fafaal- 1--

obj K = K
obj S = S

obj ONE - ONE

obj PAIR I- (-> A (-> B (& B A)))

M HP (MP S (MP K (MP S (MP (MP S (MP K PAIR))
(MP (MP S K) K)))))

(MP (MP S (MP K K)) (MP (MP S K) K))
obj LEFT :- ('> (& B A) A) - RIGHT
obj RIGHT : I- (> (& B A) B) = LEFT

% Inference Rule
obj MP " MP

end % let open
end; %. realizor SYMM_&

The realizor SYMM_& makes use of a dependent signature: the result signature is defined
in terms of the parameter signature - each instance of SYMM_& determines a realizor that
satisfies the corresponding instance of the signature HILBERT.

4 Search

The Elf core language has an operational interpretation which resembles Prolog's operational
interpretation of Horn clauses. We will only briefly sketch it here-details and further
discussion can be found in [22, 23].

Within the core language implementation, an interactive top-level similar to that of
Prolog is provided in order to pose queries. A query in this context consists of a type,
possibly with some free variables. This represents the goal of finding a closed object of the
given type by searching through a signature in a depth-first way. As in Prolog, this employs a
unification algorithm (which postpones certain equations as constraints) and back-chaining.

This only describes the search behavior to a first approximation. In order to make this
operational model feasible, the programmer has a certain amount of control over how the
search is performed by distinguishing open and closed families. T,'tuitively, a proof object

13

and answer substitution may contain free variables of open type, but no free variables of
closed type. Put another way: a logic variable of closed type represents a goal (which is
instantiated through search); a logic variable of open type on the other hand is instantiated
only through unification and thus represents ordinary logic variables in the sense of Prolog.
Within the module system, we prefer to call closed families dynamic, while we refer to open
families as static.

We begin by defining a system of natural deduction for the minimal propositional calculus
we have considered so far. We have to model the natural deduction rules reproduced below. S

-x
A

B A=fB A

A=* B B

A B&I A&B & EL A&B.& ER -- TI

A&B A B T

The rule of implication introduction cancels all assumptions of the formula A which have
been labeled with x. The transcription of these into Elf follows the standard LF methodology
and is discussed in [11]. Note the implicit quantification and the representation of the
deduction of B from assumption A as a function which transforms a deduction of A into a
deduction of B.

signature NATDED (realizor L : MPCLANG) =
sig

let open L in

% Natural deductions
far ' : o-> type

% Inference rules
obj ->I (! A-> ! B) ->A (> B)
obj ->E : (=> A B) -> ! A-> ! B
obj I ! A-> ! B->! (& A B)
obj &EL : ! (& A B) -> ' A
obj &ER: ! (& A B) -> ! B
obj ttI ! tt

end
end;

Note that this signature is parameterized over a realization of the language of minimal
propositional calculus. When we relate natural deduction to the Hilbert calculus later, we can
guarantee simply by instantiation that both calculi are constructed over the same language.

14

Next we program a very simple theorem prover for this logic. The intended operational
use of this is to search for natural deductions in normal form up to a given depth bound.
This does not directly construct natural deductions as they are defined above, but bounded
normal deductions can be interpreted as natural deductions, as we will show later.

signature NAT =
sig

fam nat : type
obj z : nat
obj s nat -> nat

end;

signature BDDNATDED (realizor L : MPC_LANG)
(realizor Nat : NAT) -

sig
let open L

obj s = Nat.s
in

% Bounded, normal deductions
% Searching backwards from the conclusion,
% using only introduction rules
fain !< Nat.nat -> o -> type

% Searching forwards from the assumptions,
7' using only elimination rules
fam !> : Nat.nat -> o -> type

% Inference rules
obj ->I< : (({M:Nat.nat} !> (s M) A) -> !< N B)

-> !< (s N) (=> A B)
obj =>E> !> N (-> A B) -> !< N A -> !> (s N) B
obj &I< !< N A -> !< N B -> !< (s N) (& A B)
obj &EL> !> N (& A B) -> !> (s N) A
obj &ER> !> N (k A B) -> !> (s N) B
obj ttI< :!< (s N) tt

obj close !> N A -> !< N A

end %. let open L ...
end; %. signature BDDNATDED

Within the Elf core language implementation, the problem of finding a bounded normal
deduction for the proposition A =- A, where A is a propositional variable (with a rather
arbitrary bound of 3), can be expressed with the following query (assuming the families I<
and !>are dynamic):

1.5

?- {A:o} !< (s (s (s z))) (> A A).
solved

Query - [A:o] =>I< ([p:{M:nat} !> (s M) A] close (p (s z))).

Within the module system, execution of a query is viewed as the process of finding a
definition of an object with a declared type. There is an additional mechanism for search
control in that the realizations which may be used for search have to be explicitly intro-
duced as dynamic. Since there are no constants available at the top-level it is convenient
to introduce top-level constructs which allow us to construct initial realizations which may
be thought of as implicit parameters to subsequent realizor definitions. These come in two
flavors: dynamic declarations are used for search, while static declarations are used only
for type-checking. A properly scoped version to introduce dynamic declarations inside of
realizors (with keyword using) is introduced later in this section.

top ::= static decl static declaration

I dynamic decl dynamic declaration

The following top-level definitions will initiate search for a bounded normal deduction of
depth at most 3:

static realizor L : MPCLANG;
dynamic realizor BN : BDDNATDED (realizor L - L);
open L;
open BN;
solve obj Query : {A:o} !< (s (s (s z))) (-> A A);

This will result in the top-level definition

obj query - EA:o] ->I< ([p:{M:nat} !> (s M) A] close (p (s z)))

This example also introduces solve, a new form of definition.

defn ::= solve decl initiate search

When processing solve decl the interpreter tries to find definitions for all the constants
declared by decl, using objects which are dynamically available. Operationally, logic variables
will be created for all free variables and declared constants in decl and the Elf interpreter will
then search for appropriate instances for these variables in the order of declaration. Upon
success (it only looks for the first solution), the bindings of the logic variables are used to
extract appropriate definitions of the declared constants by implicitly quantifying over all
remaining logic variables (which must have static type). The solve construct cannot be
applied to declarations of families: it only searches for definitions of objects.

A top-level declaration of the form dynamic f am id : kindezp means that the declared
family will be treated as dynamic. That is, search within the scope of the declaration

16

(initiated by solve) will ensure that all free variables of dynamic type will be solved. A
declaration of the form dynamic obj id : famezp means the the declared constant id will be
available for backchaining search. A dynamic declaration of a realizor applies hereditarily to
its constituent declarations (similarly for composition and inclusion).

To illustrate the concept of dynamic declarations and solve, we consider a few simple
examples.

static faN nat : type;
static obj z nat;
static obj s nat -> nat;
solve obj n nat;

will succeed, elaborating the last line to the definition

obj n - N : nat;

which, in full notation, would be

obj n - [N:nat] N : nat -> nat;

where the argument to n is implicit. In fact, using n anywhere subsequently will have the

effect of replacing it by a free (anonymous) variable, since it will be expanded to n -, which
is equal to - by the definition of n. This is generally the case if the type of a variable to be
solved is not dynamic.

dynamic faro nat : type;
static obj z nat;
static obj s nat -> nat;
solve obj n nat;

This will fail, since there are no dynamic objects available to construct a term of type nat.
Since nat is dynamic, no free variables of type nat are tolerated in the substitution for n.
and search will fail.

dynamic faN nat : type;
dynamic obj z :nat;
dynamic obj s nat -> nat;
solve obj n : nat;

This will succeed and bind n to z.

dynamic fain nat : type;
static obj z : nat;
dynamic obj s : nat -> nat;
solve obj n : nat;

17

There is no closed term of type nat which can be constructed only from dynamic objects,
but the interpreter fails to recognize this, and instead loops while constructing incomplete
answers of the form s (s (s ... (s N))), for logic variables N of type nat.

We now would like to make the relationship between bounded normal deductions and
natural deductions explicit. Not surprisingly, this takes the form of a realization of the
signature BDDNATDED from the signature NATDED, both over the same language L. There is
no particular difficulty in defining this realization: intuitively, both backwards and forwards
provability judgments are interpreted as provability by simply ignoring the bounds. S

realizor BDDND
(realizor L : MPCLANG)
(realizor Nat : NAT)
(realizor ND : NATDED (realizor L = L))
: BDDNATDED (realizor L - L) (realizor Nat - Nat) -

real
far !< N A = ND.! A
faro !> N A = ND.! A

obj ->I< - [P] ND.=>I ([x:ND.! A] P (En:Nat.nat] x))
obi =>E> - ND.->E
obj &I< - ND.&I
obj AEL> ND.&EL
obj &ER> - ND.&ER
obj tt1< - ND.ttl
obj close - [P] P

end; %. realizor BDD.ND

Next we can combine the search for bounded normal deductions with tne interpretation
above to construct an interpretation showing that natural deductions are complete with
respect to Hilbert deductions. The following realization shows that all Hilbert axioms are
provable within our natural deduction calculus, and that Modus Ponens can be realized as a
rule of inference. The construction of this realization involves bounded search (with a bound
of 5).

realizor NatdedHilbert
(realizor L : MPCLANG)
(realizor Nat : NAT)
(realizor ND : NATDED (realizor L - L))
: HILBERT (realizor L - L)

real
let

obj five - Nat.s (Nat.s (Nat.s (Nat.s (Nat.s Nat.z))))
open L
open ND

in

18

using realizor BD - BDDND (realizor L - L)
(realizor Nat - Nat)
(realizor ND O ND)

in
solve obj K' : {A:o} {B:o} BD.!< five -> A (-> B A))
solve obj S' : {A:o} {B:o} {C:o}

BD.!< five (=> (=> A (=) B C))
(- ,>A B) (>A C)))

end

obj l-
obj K KI _
obj S M S' - - -

obj ONE = ttI
obj PAIR = ->I [x] =>I [y] &I x y
obj LEFT -,>I Ex] &EL x
obj RIGHT = >I [x] &ER x

obj MP = ->E

end % let solve ...
end; % realizor NatdedHilbert

New here is the construct using with syntax

defn ::= using defnl in defn2 end use dynamically

For each definition in defn1 a corresponding dynamic declaration will be introduced. In the
basic cases, this will declare the kind of a defined family, the type of a defined object, or the
signature ascribed to a realizor. If the declaration can not be determined unambiguously,
an appropriate error message is issued. The definitions of the constants in defn1 are not
visible for type-checking and search within defn2. However, upon leaving the scope of the
using statement, occurrences of the constants in defn2 are replaced by the definition given
to them in defnl. Thus, in contrast to let, using introduces definitions which are opaque
(abstract) within its scope. This yields exactly the right behavior here: while we solve for
objects K' and S', we use the signature containing ! < and ! > for back-chaining search. Once
we have constructed the desired objects (representing bounded normal deductions) and leave
the scope of using, the definitions are applied, interpreting the bounded normal deductions
as natural deductions. Those natural deductions are then used directly to provide definitions
for axioms K and S in the Hilbert calculus.

When processing using defn1 in defn2 end, realizations within defni are hereditarily
marked as dynamic. This is convenient in most circumstances, but it does require that dec-
larations intended for dynamic use and those intended for static use are separated. Normally,

19

the definition of the syntax of an object language will be static, while signatures intended
to perform search over the expressions of the object language are explicitly parameterized
over a realization of the object language.

5 Signature Relations

The interpretations which can be represented using realizors within the language we have
presented so far are limited by the functions which are expressible in the core language. The
core language provides A-abstraction as its only mechanism for the formation of functions.
This is no accident-generalizations of the core language to admit, for example, some forms of
recursion either render LF type-checking undecidable, or destroy the adequacy of encodings
by admitting too many functions. Consider, for example, the rule of implication introduction
in the representation of natural deductions:

_X
A

B

A =* B ;V

The premiss of this rule is represented as a function which transforms a deduction of A into
a deduction of B, that is

obj =>I : ('A-> 'B)-> A (u>AB)

In order for this to lead to an adequate encoding of natural deductions we must make sure
that every object P of type (! A -> ! B) does in fact represent a deduction of B from the
assumption A. If A-abstraction is the only way to form functions this is guaranteed, since P
must be equivalent to a term of the form [x : ! A] P', where P' is schematic in x. Under
generalization, for example, to admit primitive recursion, this is no longer the case.

We call the kind of realizations which can be directly represented as a realizor a uniform
realization. There are a number of reasons why certain interpretations may not be uniform.
A realization may have to be defined by general or primitive recursion on the structure of
an object. Or a realization may require recursion on the structure of a type. As an example.
consider the following attempt to prove the deduction theorem for the Hilbert formulation
of minimal propositional calculus.

signature DEDTHM (realizor L : MPCLANG) =
sig

include HILBERT (reali-or L = L)
obj dedthm : (0- A -> l- B) -> l- (=> A B)

end;

We cannot uniformly construct a deduction of I - (-> A B) from a deduction of I - B
under the assumption I - A. Instead, we must distinguish cases, depending on the form of
the deduction of I - B. In a hypothetical language extension by a form of primitive recursion,
this might be written as following "realizor".

20

"realizor" DedThm (realizor L : MPCLANG)
(realizor H : HILBERT (realizor L = L))

DEDTHM (realizor L = L) =
real

let open L open H in
obj dedthm (Ix] x) -MP (MP S K) K

1 dedthm (Ex] ONE) - MP K ONE
I dedthhm ([x) PAIR) - HP K PAIR
I dedthm ([x) LEFT) - MP K LEFT
I dedthm (Ex] RIGHT) a MP K RIGHT
I dedthm ([x] K) = MP K K
I dedthm (Ex] S) = MP K S
I dedthm (Cx] MP (P x) (q x)) = MP (MP S (dedthm P))

(dedthm Q)
end

end;

Does the fact that this is not a legal realizor mean that we cannot use the deduction
theorem for the construction of deductions? Fortunately not! While we do not have a way
of internally verifying through a realization that the deduction theorem is an admissible rule
of inference, we can still implement the computational content of the realization above as a
relation between deductions.

signature DEDTHM (realizor L : MPCLANG)
(realizor H : HILBERT (realizor L = L)) ,

sig
let open L open H in

fam ded : (- A -> I- B) -> I- (=> A B) -> type

obj dedID ded ([x] x) (MP (MP S K) K)
obj dedK ded (Cx] K) (MP K K)
obj dedS ded ([x] S) (MP K S)
obj dedONE ded ([x] ONE) (MP K ONE)
obj dedPAIR ded ([x] PAIR) (MP K PAIR)
obj dedLEFT ded ([x] LEFT) (MP K LEFT)
obj dedRIGHT ded ([x) RIGHT) (MP K RIGHT)
obj dedMP ded (Ex] MP (P x) (Q x)) (MP (MP S P') q')

<- ded P P' <- ded Q Q'
* end

end;

We have written the final clause using the left-arrow notation in order to emphasize the
operational reading of this signature. More efficient versions of this algorithm (known as
bracket abstraction) can easily be implemented. For example, dedK through dedRIGHT

21

can be combined into one clause. Type-checking of the above signature guarantees that if
a query of the form solve c : ded P Q succeeds, then Q will indeed be a deduction of the
appropriate implication. The fact that such a query will always succeed whenever P is closed
and Q is a %ree variable is easily checked by hand, but this property remains outside the type
system. Some initial thoughts on the mechanization of this check are reported in [24] and
applications to non-trivial problems in the theory of programming languages can be found
in [17] and [10].

As a related example, consider the implementation of a translation from natural deduc-
tions into Hilbert deductions. This relation, too, defines a (non-uniform) realization and
takes advantage of the deduction theorem.

signature HILBERTNATDED
(realizor L MPCLANG)
(realizor H HILBERT (realizor L L))
(realizor N NATDED (realizor L Q L)) =

sig
let open L open H open N in

realizor D DEDTHM (realizor L = L) (realizor H = H)

faro ndh ! A -> I- A -> type

obj ndh.=>I ndh (->I PP) Q
<- ({x:! Al {y:I- A}

ndh x y
-> ({C:o} D.ded ([z:l- C) y) (MP K y))
-> ndh (PP x) (PP' y))

<- D.ded PP' Q

obj ndh.=>E ndh (->E P Q) (MP P' Q') <- ndh P P' <- ndh Q Q'
obj ndh_&I ndh (&I P Q) (MP (MP PAIR P') Q')

<- ndh P P'

<- ndh Q Q'
obj ndh-&EL ndh (&EL P) (MP LEFT P') <- ndh P P'

obj ndh-&ER ndh (&ER P) (MP RIGHT P') <- ndh P P'
obj ndh-ttI ndh ttl ONE
end

end;

Note how we used D. ded as an auxiliary judgment in the implication introduction rule.
According to our signature specifying inference rules for natural deduction, PP has type
! A -> ! B for some A and B. To translate PP we make the local assumption ! A la-
beled x and then translate PP x (of type ! B). The corresponding Hilbert deduction will
use a corresponding hypothesis y : I- A. We make this correspondence explicit through
the assumption ndh x y. This translation yields a deduction PP' : - A -> I - B, but

22

we need to construct a deduction of I - (i> A B). This is where we apply bracket ab-
straction (the computational content of the deduction theorem), which is done by call-
ing D.ded PP' Q. It remains to explain the second local assumption in this rule, namely
{C: o} D. ded ([z: I - C] y) (MP K y). Recall, that bracket abstraction as implemented in
the signature DEDTHM applies only to deductions from exactly one hypothesis. Here, how-
ever, we introduce a new, temporary hypothesis y which is not accounted for in the signature

* DEDTHM. Therefore we have to specify the behavior of the bracket abstraction algorithm on
y. The obvious course of action is the same as for the axioms: simply return MP K y.

This example uses a declared realization within a signature instead of explicit parameteri-
zation or inclusion. The signature HILBERTNATDED thus intrinsically contains the realization
of the deduction theorem. As a consequence, whenever HILBERTNATDED is used dynami-
cally, the judgment D .tded will also be available dynamically. At the same time, unlike when
include is employed, the name space of the realization D remains separate.

The computational content of relations such as the one above is sufficient to aid in
the construction of other realizations. We now return to an earlier example, showing how
the realization establishing the symmetry of conjunction could have been established by
translating a natural deduction.

realizor SYMM_ &'
(realizor L MPC_LANG)
(realizor H : HILBERT (realizor L = L))
(realizor N : NATDED (realizor L = L))
(realizor HN : HILBERTNATDED (realizor L = L)

(realizor H = H)
(realizor N = N))

HILBERT (realizor L - SYMM&._LANG (realizor L. = L)) =

real
let open L open H in

fam l- =I-

obj K = K

obj S = S
obj ONE = ONE

using realizor HN = HN
in

solve obj H : I- (=> A (-> B (& B A)))
obj NDH HN.ndh (N.->I [x] N.=>I [y] (N.&I y x)) H

end

obj PAIR = H

obj LEFT : I- (> (A B A) A) = RIGHT

23

obj RIGHT I- (-> (& B A) B) - LEFT

% Inference Rule

obj MP =MP

end
end; % realizor SYMM_&'

The two objects to be solved for, H and NDH, are solved simultaneously. Since I - is
not dynamic, it is instantiated only through the process of solving for NDH, whose ype is
dynamic. However, we need to declare H here so we can use its binding as the definition for
PAIR.

The natural deduction we give explicitly here could also have been generated through
search for a bounded normal deduction and its interpretation as a natural deduction. We
leave it to the reader to write out the appropriate realizor.

6 Related and Future Work

The design of the module system owes a great deal to the ML module system [16, 19]. We
have replaced sharing equations by explicit parameterization. at the cost of some verbosity,
but with the gain of semantic simplicity. While the similarities to the ML module system
are striking in some respects, emphasis has shifted significantly. In ML, definitions within
structures (the ML analogues of our realizations) give rise to computation, while in our setting
of logic programming the signatures themselves are given an operational interpretation by a
search procedure. Realizations only interpret the result of such computations.

The problem of modularity in logical frameworks has previously been addressed in various
typed A-calculi. De Bruijn's telescopic mappings [4], for example, provide for a first-class
notion of contexts. Along similar lines, a type-theoretic calculus with explicit contexts called
DEVA has been developed and applied to a number of interesting examples by de Groote [5]
and Weber [30]. Our module calculus can be seen as a higher-level language which could be
compiled into a lower-level type theory such as DEVA. The main difficulty in this compilation
process is to account for constant names (which are not subject to a-conversion, in contrast
to bound variables names) and the implicit coercions which take place when signatures or
realizations are instantiated.

Much more powerful, impredicative type theories have been investigated by Luo [14] and
are implemented within the LEGO system [15]. The basis for this work is the Calculus of
Constructions [3] which is not intended as a logical framework, but a type theory in which
constructive mathematics can be directly formalized and reasoned about internally. Explicit
theory structuring is achieved through E-types. This provides no real name-space manage-
ment - it has more the flavor of an "abstract syntax" for a module calculus. In fact, ECC
provides a suitable framework in which to interpret the modularity constructs introduced
here. In particular, the static semantics of our language may be given by a translation
into ECC that mediates between concrete names and abstract projections associated with
E-types. The full expressive power of ECC is not needed for this purpose, but in view of

the meta-theoretic properties of ECC (in particular, strong normalization and confluence),

there is no harm in doing so.
Our thinking has also been influenced by the work of Cartmell on contextual categories [1],

from which the term "realizor" is derived. The relevance of Cartmell's work stems from the
central role of contexts in his treatment of generalized algebraic theories. In our setting
signature expressions denote a form of context, and realizor expressions denote realizations
in essentially Cartmell's sense. In particular, Cartmell's definition of realization involves pre-
cisely the form of sequential dependency that we use in our definition of signature matching.
To make the connection precise would require a formal semantics in which signature expres-
sions denote LF signatures, and in which realizor expressions denote realizations between
LF signatures. This is only approximately correct, since we must also account for qualified
names, nested realizor definitions, parameterized signatures, and dependent signatures. The
full exposition of this semantics lies beyond the scope of this paper, but we feel confident
that such an explanation may be given in terms of an extension of the LF type theory with
a level of signatures and realizors. It is important to ensure that the adequacy of encodings
is preserved on p-ssage to a modular presentation; we c,'- d'er this an important direction
for further researcL.

None of the calculi mentioned above ýjve an integral treatment to search control, which
is provided within our framework. In the context of more traditional logic programming,
this has been in addressed in a simhar mannor by Miller [18]. In Miller's approach, clauses
can be added to the program through implication with its intuitionistic meaning: in order
to solve the goal D => G we assume D while solving G. In Elf this is also supported in the
core language: operationally, trying to find an object of type A --+ B or IIx:A. B amounts
to assuming that we have an object of type A and then trying to find an object of type B.
Miller then generalizes implication by allowing a module name M in place of the formula D.
where a module is an abbreviation for a large formula. Our using construct serves a very
similar purpose in that is makes other code available for search within a well-defined scope.
However, Miller's approach does not address name-space management. It is difficult to add
this, since module constructs such as M ==* G can be embedded in clauses. In particular,
there could be logic variables ranging over module names, which makes it impossible to
statically resolve references to constants declared in external modules.

Sannella and Burstall [28] introduced a notion of modular presentation for LCF theo-
ries, with an associated search procedure that takes advantage of the structure of a theory
presentation to limit the search space. These methods were generalized to an arbitrary
logic, considered as an abstract family of consequence relations, by Harper, Sannella, and
Tarlecki [13, 12], where their behavior under representation in a logical framework is also
considered. Local declarations introduce problems of adequacy that are rectified by ad hoc
techniques that segregate types that represent judgments from other types. Subsequently,
Gardner [8] introduced a more refined notion of framework that enforces such a segrega-
tion; it seems plausible that in this setting the aforementioned problems of adequacy do not
arise. The possibility of introducing local declarations in the present setting requires further
investigation.

Sannella and Wallen's proposal [29] for a module system for Prolog bears certain sim-
ilarities to ours as both have been inspired by ML. In their system, signatures provide

declarations of arities for predicate and function symbols and structures contain clauses
defining the predicates. Thus, as in ML, structures and functors (as parameterized struc-
tures) contain code to be executed, while signatures declare what structures must define.
In our approach, signatures contain declarations and code to be executed, while realizations
allow us to define interpretations between signatures and thus the deductive systems they
represent, adding another dimension to the module calculus.

The design presented here is deliberately conservative in that we restricted ourselves to
constructs for which a firm type-theoretic basis can be established. There are a number of
additional features for which this is less clear, and which we have therefore been omitted
at present. We will reconsider them in the light of practical experience with a prototype
implementation. The principal features we have in mind are sharing equations, higher-
order realizations, local declaraticns, inclusion of individual declarations, and declaration of
infix operators. Finally, we are considering whether the language of realizations could be
strengthened by some form of primitive recursion in order to allow non-uniform realizations
without destroying the basic properties of the LF type theory. We feel that the natural
separation of the module level from the object level provides us with an opportunity for
such an extension which would not be available in the core calculus, the LF type theory.
This issue is closely related to the question of how to include inductive types in the module
calculus, if the core language were generalized to a more expressive type theory such as the
Calculus of Constructions.

26

A Syntax

Identifiers

id term identifier

sigid signature identifier

'Srealid realizations identifier

longrealid (longrealid.)realid qualified realization identifier

lon gid (ion grealid .)id qualified term identifier

Core Language

kindexp type Type
f {id (:famezp)}I kindezp Hx:A. K

Ifamezp -> kindexp A --* K

I (kindexp)

famexp ion gid a
f {id (:famexpl)} fameXP2 H~x:Al. A2

I Ed (:famexpl)J fameXP2 Ax:Aj. A 2

Ifamexp objexp AM
I famexp1 -> fameXP2 A, - A 2

I fameXP2 <- famexp, A, - A 2

I -
I famexp :kindexp
I (famexp)

Objexp :=longid c or x
I id (:famexp)) objexp Ax:A. M

I objexp, objeXP2 MI M2

Iobjexp :famexp
I (objexp)

27

Declarations and Signatures

sigexp sig decl end encapsulation
I sigid (inst, ... inst,) signature instantiation

par-n (decl) parameter declaration

decl famo id kindexp family
obj id famexp object
realizor realid : sigexp realizor
decl1 dec!2 composition

I let defn in decl end local definition
I include sigexp inclusion

Definitions and Realizations

realexp real defn end encapsulation
I longrealid (inst, ... instn) instance

inst (defn) parameter instantiation

defn faro id (: kindexp) famexp family
I obj id (:famezp) = objezp object
I realizor realid (:sigexp) = realexp realizor
I defn1 defn2 composition
I let defn1 in defn2 end local definition
I open longrealid (:sigexp) inclusion
I using defnI in defn2 end use dynamically
I solve decl initiate search

Top-Level

top signature sigid (parm1 ... parm,,) - sigezp signature binding

realizor realid (parm1 ... parm,) (:sigexp)
= realexp realizor binding

static decl static declaration
dynamic decl dynamic declaration

I defn pervasive definition
I topI ; top 2 compoqition

28

References

[1] John Cartmell. Generalized algebraic theories and contextual categories. Annals of
Pure and Applied Logic, 32:209-243, 1986.

[2] Thierry Coquand. An algorithm for testing conversion in type theory. In G6rard Huet
and Gordon Plotkin, editors, Logical Frameworks, pages 255-279. Cambridge University
Press, 1991.

[3] Thierry Coquand and G6rard Huet. The Calculus of Constructions. Information and
Computation, 76(2/3):95-120, February/March 1988.

[4] N. G. de Bruijn. Telescopic mappings in typed lambda calculus. Information and
Computation, 91:189-204, 1991.

[5] Philippe de Groote. Nederpelt's calculus extended with a notion of context as a logical
framework. In G~rard Huet and Gordon Plotkin, editors, Logical Frameworks, pages
69-86. Cambridge University Press, 1991.

[6] Conal M. Elliott. Extensions and Applications of Higher-Order Unification. PhD the-
sis, School of Computer Science, Carnegie Mellon University, May 1990. Available as
Technical Report CMU-CS-90-134.

[7] William M. Farmer, Joshua D. Guttman, and F. Javier Thayer. IMPS: An interactive
mathematical proof system. In M. E. Stickel, editor, 10th International Conference on
Automated Deduction, pages 653-654. Springer-Verlag LNAI 449, 1990.

[8] Philippa Gardner. Representing Logics in Type Theory. PhD thesis, University of
Edinburgh, July 1992. Available as Technical Report CST-93-92.

[9] Herman Geuvers. The Church-Rosser property for r/7-reduction in typed A-calculi. In
A. Scedrov, editor, Seventh Annual IEEE Symposium on Logic in Computer Science,
pages 453-460, Santa Cruz, California, June 1992. IEEE Computer Society Press.

[10] John Hannan and Frank Pfenning. Compiler verification in LF. In Andre Scedrov,
editor, Seventh Annual IEEE Symposium on Logic in Computer Science, pages 407-
418, Santa Cruz, California, June 1992. IEEE Computer Society Press.

[11] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics.

Journal of the ACM, 199? To appear. Available as Technical Report CMU-CS-89-173,

Carnegie Mellon University. A preliminary version appeared in Symposium on Logic in
Computer Science, pages 194-204, June 1987.

[12] Robert Harper, Donald Sannella, and Andrzej Tarlecki. Logic representation. In D.H.
Pitt, D.E. Rydeheard, P. Dybjer, A.M. Pitts, and A. Poigne6, editors, Proceedings of
the Workshop on Category Theory and Computer Science, pages 250-272, Manchester,
UK, September 1989. Springer-Verlag LNCS 389.

29

[131 Robert Harper, Donald Sannella, and Andrzej Tarlecki. Structure and representation
in LF. In Fourth Annual Symposium on Logic in Computer Science, pages 226-237,
Pacific Grove, California, June 1989. IEEE Computer Society Press.

[14] Zhaohui Luo. ECC, an extended Calculus of Constructions. In Fourth Annual Sym-
posium on Logic in Computer Science, pages 386-395. IEEE Computer Society Press,
June 1989.

[15] Zhaohui Luo, Robert Pollack, and Paul Taylor. How to use LEGO. Technical Report
LFCS-TN-27, Laboratory for Foundations of Computer Science, University of Edin-
burgh, 1989.

[16] David MacQueen. Using dependent types to express modular structure. In Proceedings
of the 13th ACM Symposium on Principles of Programming Languages, pages 277-2S6.
ACM SIGPLAN/SIGACT, 1986.

[17] Spiro Michaylov and Frank Pfenning. Natural semantics and some of its meta-theory in
Elf. In L.-H. Eriksson, L. Hallnis, and P. Schroeder-Heister, editors, Proceedings of the
Second International Workshop on Extensions of Logic Programming, pages 299-344,
Stockholm, Sweden, January 1991. Springer-Verlag LNAI 596.

[18] Dale Miller. A logical analysis of modules in logic programming. Journal of Logic
Programming, 6(1-2):57-77, January 1989.

[19] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML. MIT
Press, Cambridge, Massachusetts, 1990.

[20] Gopalan Nadathur and Dale Miller. An overview of AProlog. In Robert A. Kowalski and
Kenneth A. Bowen, editors, Logic Programming: Proceedings of the Fifth International
Conference and Symposium, Volume 1, pages 810-827, Cambridge, Massachusetts, Au-
gust 1988. MIT Press.

[21] Lawrence C. Paulson and Tobias Nipkow. Isabelle tutorial and user's manual. Technical
Report 189, Computer Laboratory, University of Cambridge, January 1990.

[22] Frank Pfenning. Elf: A language for logic definition and verified meta-programming.
In Fourth Annual Symposium on Logic in Computer Science, pages 313-322. Pacific
Grove, California, June 1989. IEEE Computer Society Press.

[23] Frank Pfenning. Logic programming in the LF logical framework. In Gerard Huet and
Gordon Plotkin, editors, Logical Frameworks, pages 149-181. Cambridge University
Press, 1991.

[24] Frank Pfenning and Ekkehard Rohwedder. Implementing the meta-theory of deductive
systems. In D. Kapur, editor, Proceedings of the 11th International Conference on
Automated Deduction, pages 537-551, Saratoga Springs, New York, June 1992. Springer-
Verlag LNAI 607.

30

[25] Randy Pollack. Implicit syntax. In G. Huet and G. Plotkin, editors, Proceedings of the
First Workshop on Logical Frameworks, Antibes, pages 421-434. Preliminary Version,
May 1990.

[26] David Pym. Proofs, Search and Computation in General Logic. PhD thesis, University
of Edinburgh, 1990. Available as CST-69-90, also published as ECS-LFCS-90-125.

(27] Anne Salvesen. The Church-Rosser theorem for LF with 8i?-reduction. Unpublished
notes to a talk given at the First Workshop on Logical Frameworks in Antibes, May
1990.

[28] D. Sannella and R. Burstall. Structured theories in LCF. Technical Report CSR-129-83,
University of Edinburgh, 1983.

[29] D. T. Sannella and L. A. Wallen. A calculus for the construction of modular Prolog
programs. Journal of Logic Programming, 12:147-177, 1992. A preliminary version
appears in the Proceedings of the 4th Symposium on Logic Programming, San Francisco,
September 1987.

[30] Matthias Weber. A Meta-Calculus for Formal System Development. R. Oldenbourg
Verlag, Miinchen/Wien, 1991.

3

31

